Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs

Ayako Nagase^{1,*}, Yoriyuki Yamada², Tadataka Aoki², and Masashi Nomura³

Abstract - Urban biodiversity is an important ecological goal that drives green-roof installation. We studied 2 kinds of green roofs designed to optimize biodiversity benefits: the Harappa (extensive) roof and the Biotope (intensive) roof. The Harappa roof mimics vacant-lot vegetation. It is relatively inexpensive, is made from recycled materials, and features community participation in the processes of design, construction, and maintenance. The Biotope roof includes mainly native and host plant species for arthropods, as well as water features and stones to create a wide range of habitats. This study is the first to showcase the Harappa roof and to compare biodiversity on Harappa and Biotope roofs. Arthropod species richness was significantly greater on the Biotope roof. The Harappa roof had dynamic seasonal changes in vegetation and mainly provided habitats for grassland fauna. In contrast, the Biotope roof provided stable habitats for various arthropods. Herein, we outline a set of testable hypotheses for future comparison of these different types of green roofs aimed at supporting urban biodiversity.

Introduction

Rapid urban growth and associated anthropogenic environmental change have been identified as major threats to biodiversity at a global scale (Grimm et al. 2008, Güneralp and Seto 2013). Green roofs can partially compensate for the loss of green areas by replacing impervious rooftop surfaces and thus, contribute to urban biodiversity (Brenneisen 2006). Green roofs can support arthropods (Hwang and Yue 2015, Kadas 2006, MacIvor and Lundholm 2011, MacIvor et al. 2015, Madre et al. 2013, Nagase and Nomura 2014), including both common and rare species (Brenneisen 2006, Grant 2006).

In order to optimize biodiversity benefits, biodiverse roofs in Switzerland and the UK have focused on particular species of concern; e.g., *Phoenicurus ochruros* Gmelin (Black Redstart), which relies on old vacant lots and brownfield sites (Gedge 2003). Biodiverse roofs are designed to recreate such habitats by using urban substrates such as brick rubble, crushed concrete, sands and gravels, and minimal vegetation. Some cities (e.g., Basel, Switzerland; Toronto, Canada; and London, UK) have green-roof policies that include biodiversity objectives (Williams et al. 2014). Furthermore, a number of different roof styles have emerged to target specific taxa and to mimic local habitats (Lundholm 2006).

Manuscript Editor: Sylvio Codella

¹College of Liberal Arts and Sciences, Chiba University, Chiba, Japan. ²Green Infrastructure Group, Kajima Corporation, Tokyo, Japan. ³Graduate School of Horticulture, Chiba University, Chiba, Japan. *Corresponding author - anagase@chiba-u.jp.

Although the number of biodiverse roofs is increasing in some European countries, few examples exist in Japan (Ishimatsu and Ito 2013, Yamada et al. 2013), where there seem to be several cultural and political barriers. First, in the UK, a brownfield site is defined as "previously developed land" that has the potential for repurposing. In contrast, a brownfield site in the USA refers to industrial land that has been abandoned and is contaminated with low levels of hazardous waste and pollutants (Gray 2015). Brownfield sites also have a negative connotation in Japan; therefore, it has been difficult to promote the concept there.

Second, the Japanese perception is that green roofs should be kept green; therefore *Sedum* spp. (stonecrops) are frequently used. However, it is very difficult to keep such plantings in good condition in Japan without irrigation and intensive maintenance (MLITT 2009).

Finally, green-roof regulations vary among cities, and many local Japanese authorities encourage the installment of intensive (thick substrate; require both regular maintenance and an irrigation system) rather than extensive green roofs (thin substrate; require little maintenance/irrigation). Subsidies to install green roofs are often contingent on selecting the intensive option (Organization for Landscape and Urban Infrastructure 2016). In Japan, 54% of local jurisdictions cannot provide subsidies for biodiverse roofs and a further 33% have reduced subsidies for biodiverse roofs that do not fulfill depth and/or irrigation requirements (Yamada et al. 2013).

In Japan, the number of green roofs has increased, with at least 413 ha installed between 2001 and 2014 (MLITT 2014). Methods to construct inexpensive, lightweight, extensive green roofs must be developed in order to facilitate further installation and retro-fitting. Although intensive roofs may provide habitats that promote biodiversity, the potential advantages of extensive roofs suggest that further investigations are warranted.

Our research group has adapted European extensive green-roof design to Japanese culture. We developed a region-specific design: the Harappa Roof. "Harappa" is a Japanese word that describes vacant lots or open fields, including grasslands frequently found in residential areas (Fig. 1). These lots are important play areas for children and have been valuable habitats for grassland fauna since the Showa era (1926–1989; Shuowen 2006). We developed the Harappa style to sidestep the negative image of brownfield. Although the community structure of brownfields and Harappa is similar, the public perception is quite different. Many people have childhood experiences playing in Harappa, and thus there is nostalgia for such sites in many Japanese cities (Nagase et al. 2015).

To promote biodiversity benefits, the Biotope Roof has also been developed and installed in Japan. Biotope roofs are intensive roofs planted with various species, including native trees and shrubs, which serve as hosts and nectar sources for arthropods. These roofs can also include water features, stones, and other structural elements, to create diverse habitats. They require careful maintenance to avoid colonization by invasive plant species (Nagase and Nomura 2014).

In this paper we introduce the Harappa roof and encourage green-roof practicioners outside Japan to explore its local possibilities (Lundholm 2006). We present

empirical data on differences in arthropod diversity between the extensive Harappa and the intensive Biotope designs. We use this comparison to generate hypotheses for further testing. Previous studies in Europe have compared arthropod taxa on different types of extensive green roofs (e.g., Baumann 2006, Brenneisen 2006, Grant, 2006, Kadas 2006), but little research has compared extensive and intensive roofs (e.g., Coffman and Davis 2005, Coffman and Waite 2010). Our ultimate goal is to increase the number of green roofs in Japan that will support biodiversity.

Field-site Description

We installed a Biotope roof and a Harappa roof on the Nishichiba campus of Chiba University, Chiba City, Chiba Prefecture, Japan (Table 1). Chiba has a humid, subtropical climate, with hot summers and mild winters (Fig. 2). We installed the Harappa roof (180 m²) during winter 2012 on a 4-story building (Fig. 3), where it received full sunlight throughout the day. We used recycled materials whenever possible (at Harappa sites, previous construction materials, such as large pipes, tend to remain in situ; these materials are then repurposed for children's imaginative play). Therefore, we collected recycled materials from the surrounding neighborhoods to replicate Harappa conditions and to be more environmentally friendly than conventional green roofs. To construct the roof we placed a drainage layer, substrate material, and vegetation. Materials used

Figure 1. Typical Harappa roof in an urban area.

included straw from replacement of thatched roofs, bamboo, old clothes (fleece), plastic bottle caps, crushed concrete, and roof tiles. The Harrapa roof substrates also included topsoil with vegetation and seeds collected from ground-level Harappa habitat and spread over the crushed concrete and roof tiles. The substrate depth varied from 5 cm to 20 cm.

Table 1. Summary of Harappa roof and biotope roof at Chiba University. Initial costs include materials, shipping, labor, and facilities such as irrigation systems for green roofs.

Spec.	Harappa roof (extensive)	Biotope roof (intensive)
Initial cost	8000 yen/m ²	40,000 yen/m ²
Depth of substrate	5–20 cm	50 cm
Drainage layer and moisture retention mat	Straw, bamboo, old clothes (fleece), caps of PET bottles	Commercial plastic drainage layer and moisture retention mat
Substrate	Crushed brick, concrete, natural soil	Commercial green roof substrate
Plants	From neighborhood: transplanting, spontaneous vegetation	From nursery: mainly native plants including trees, shrubs and forbs; spontaneous vegetation
Irrigation system	No irrigation	Drip irrigation system
Maintenance	Little maintenance	Once a month regular maintenance
Water feature	Temporary pond	Circulated pond
Structures for biodiversity	Temporary pond, piles of stones, empty flower pots, dead branches	Pond, piles of stones
User involvement	Design, collecting materials, construction, survey	Survey

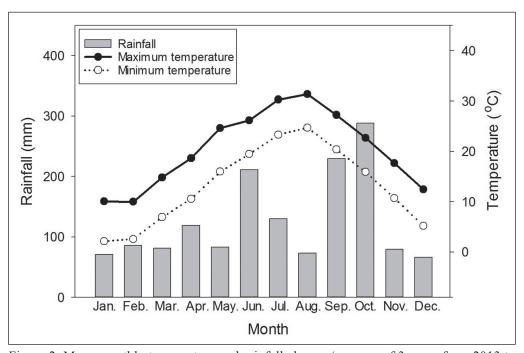


Figure 2. Mean monthly temperature and rainfall change (average of 3 years from 2013 to 2015) in Chiba, Japan (Japan Meteorological Agency 2016).

Initially, we planted 11 species (20 plants for each plant species) in 9-cm pots. Characteristics of planted flora on the Harappa roof are shown in Table 2. We identified all plant species and employed the ACFOR scale (A = abundant, C = common,

Figure 3. Harappa green roof, Chiba University, 10 July 2015.

Table 2. Characteristics of planted floral species on Harappa roof at Chiba University.

Family	Species	Distribution
Asparagaceae	Barnardia japonica (Thunb.) Schult. et Schult.f. (Japanese Jacinth)	Japan, China, Korea
Asteraceae	Aster microcephalus (Miq.) Franch. et Sav. var. ovatus (Franch. et Sav.) Soejima et Mot.Ito	Japan
	Aster yomena (Kitam.) Honda var. dentatus (Kitam.) H. Hara	Japan
Campanulaceae	Platycodon grandiflorus (Jacq.) (Balloon Flower)	Japan, China, Korea, East Siberia
Caryophyllaceae	Dianthus superbus L. var. longicalycinus (Maxim.) Williams	Japan, China, Korea, Taiwan
Lythraceae	Lythrum anceps (Koehne) Makino (Spiked Loosestrife)	Japan, Korea
Orchidaceae	Spiranthes sinensis (Pers.) Ames (Austral Ladies' Tresses)	Japan, Chiba, Siberia
Rosaceae	Potentilla hebiichigo Yonek. et H. Ohashi	Japan, China, Korea, East Asia
Rutaceae	Zanthoxylum piperitum (L.) DC. (Japanese Pepper)	Japan, Korea
Verbenaceae	Phyla nodiflora (L.) Greene (Capeweed)	Tropical and subtropical country
Violaceae	Viola mandshurica W. Becker (Sumire)	Japan, China, Siberia

F = frequent, O = occasional, or R = rare within the given area; Louette, et al. 2007) to classify abundance. We convened workshops so that local residents could be involved in the design process, including collection of materials and construction. Neither irrigation nor maintenance was conducted. We set out 3 recycled wash bowls to provide temporary water-capture stations and added piles of stones, empty flower pots, dead branches, and 4 substrate-filled tires to create wildlife habitat.

The Biotope roof (150 m²) was installed in spring 2002 on a 9-story building (Fig. 4). The roof was framed by a concrete-block retaining wall. The roof design consisted of a barrier membrane, a drainage layer (Qanat mat®), and a substrate (Laputa soil Ecola®) with a depth of 50 cm. The substrate was composed of crushed, autoclaved, aerated concrete mixed with 20% by volume of organic matter content; most of the species planted were native. All green-roof materials were obtained from Hibiya Amenis Corporation (Chiba, Japan). A pond (12 m², 50 cm deep) was installed and planted with *Typha latifolia* L. (Common Cattail). The Biotope roof received full sunlight in the morning but was shaded in the afternoon. Repairs, such as additional plantings and removal of stressed plants, were carried out in spring 2012, for a total of 12 species of trees, 18 species of shrubs, and 8 species of forbs planted (Table 3). An irrigation system was installed in 2012. Weeding of invasive species was carried out once monthly. Nagase and Nomura (2014) described the previous planting scheme of this roof and the evaluation of plant development and arthropod colonization.

Methods

We sampled arthropods from 2013 to 2015 between 0900 h and 1300 h on 17 occasions (2013: 23 August, 10 September, 5 November, 16 December; 2014:

Figure 4. Biotope green roof, Chiba University, 10 July 2015.

Table 3. Characteristics of cultivated plant species on biotope roof in Chiba University. [Table continued on next page.]

Family	Species	Distribution
Adoxaceae	Viburnum dilatatum Thunb. (Linden Arrowwood)	Japan
Aquifoliaceae	Ilex crenata Thunb. (Japanese Holly)	China
	Ilex integra Thunb. (The Mochi Tree)	Japan, China, Taiwan
Araliaceae	Fatsia japonica (Thunb.) Decne. et Planch. (Glossy-leaf Paper Plant)	Japan, Korea
Asparagaceae	Hosta sp. Liriope muscari (Decne.) L.H.Bailey (Big Blue Lilyturf) Ophiopogon japonicas (Thunb.) Ker Gawl. (Dwarf Lilyturf)	Japan, East Asia Japan, East Asia Japan, East Asia
Asteraceae	Eupatorium fortunei Thunb. Farfugium japonicum (L.) Kitamura (Leopard Plant)	Japan, China, Korea Japan, China, Korea, Taiwan
Aucubaceae	Aucuba japonica Thunb. (Japanese Aucuba)	Japan, China, Korea
Berberidaceae	Nandina domestica Thunb. (Heavenly Bamboo)	China
Calycanthaceae	Chimonanthus praecox (L.) Link (Wintersweet)	China
Caprifoliaceae	Abelia × grandiflora (André) Rehd. (Glossy Abelia)	Cultivar
Clusiaceae	Hypericum chinense L.	China
Cornaceae	Cornus kousa F. Buerger ex Hance (Korean Dogwood)	Japan, East Asia
Cyperaceae	Carex kobomugi Ohwi (Japanese Sedge)	Japan, China, Korea, Taiwan
Equisetaceae	Equisetum hyemale L. (Rough Horsetail)	Japan
Ericaceae	Enkianthus perulatus C.K. Schneid. (White Enkianthus) Rhododendron indicum (L.) Sweet (Azalia)	Japan Cultivar
Fabaceae	Lespedeza bicolor Turcz. (Shrubby Bushclover) Quercus serrata Thunb. (Konara) Quercus glauca Thunb. (Ring-cupped Oak) Quercus phylliraeoides A. Gray (Ubamegashi)	Japan, China, Korea Japan, China, Korea Japan, China, Taiwan Japan, China
Hamamelidaceae	Loropetalum chinense var. rubra (R. Brown) Oliver (Chinese Fringe Flower)	Japan, China, India
Hydrangeaceae	Hydrangea macrophylla (Thunb.) Ser. (Bigleaf Hydrangea)	Cultivar
	Hydrangea macrophylla f. normalis (Thunb.) Ser. Hydrangea paniculata Sieb. et Zucc. (Panicled Hydrangea)	Japan Japan
Hypericaceae	Hypericum monogynum L. (St John's Wort)	China
Iridaceae	Iris japonica Thunb. (Fringed Iris)	China
Lauraceae	Cinnamomum camphora (L.) J. Presl (Camphor Tree)	China Taiwan, Vietnam
Liliaceae	Tricyrtis hirta (Thunb.) Hook (Japanese Toad Lily)	Japan, Korea, Taiwan
Magnoliaceae	Michelia figo (Lour.) DC. (Port Wine Magnolia)	China
Malvaceae	Hibiscus syriacus L. (Rose Mallow)	China
Myricaceae	Myrica rubra Siebold et Zucc. (Japanese Bayberry)	Japan, China

16 April, 23 May, 20 June, 18 July, 29 August, 30 September, 3 November; 2015: 14 May, 17 June, 10 July, 7 August, 11 September, and 22 October). We divided the 2 roofs into 14 quadrats (3 m × 3 m) in which we swept an insect net 20 times. All specimens were released after we employed a hand-held 10x magnifier and several publications (Enjyu 2013, Morimoto and Hayashi 2007, Tomokuni et al. 1993) to identify all of those collected to species or morphospecies. On the

Table 3, continued.		
Family	Species	Distribution
Oleaceae	Forsythia suspensa (Thunb.) Vahl (Weeping Forsythia) Ligustrum obtusifolium Siebold et Zucc. (Border Privet) Osmanthus fragrans var. aurantiacus Lour. (Kinmokusei)	China Japan, Korea China
Orchidaceae	Bletilla striata (Thunb.) Rchb.f. (Hyacinth Orchid) Calanthe discolor Lindl. (Ebine)	Japan, China, Taiwan Japan, China, Korea
Oxalidaceae	Oxalis debilis Kunth subsp. corymbosa (DC.) O. Bolos et Vigo (Large-flowered Pink-sorrel)	South America
Pentaphylacaceae	Cleyera japonica Thunb. (Sakaki)	Japan, China, Korea, Taiwan
Rosaceae	Cotoneaster holizontalis Decne. (Rockspray Cotoneaster) Photinia × fraseri W.J. Dress 'Red Robin' (Christmas Berry)	China Cultivar
	Photinia glabra (Thunb.) Franch. & Sav. (Japanese Photinia)	Japan
	Rhaphiolepis umbellata (Thunb.) Makino (Indian Hawthorn)	Japan, Korea, Taiwan
	Spiraea thunbergii Siebold ex Blume (Thunberg's Meadowsweet)	Japan
Rubiaceae	Gardenia jasminoides Ellis (Cape Jasmine) Serisa japonica (Thunb.) Thunb. (Snowbush)	Japan, East Asia Japan, East Asia
Rutaceae	Citrus unshiu (Swingle) Marcow. (Unshu Mikan) Citrus junos (Makino) Siebold ex Tanaka (Yuzu) Poncirus trifoliata L. (Japanese Bitter-orange) Zanthoxylum piperitum (L.) DC. (Japanese Pepper Tree)	Japan, China China China, Korea Japan, Korea
Scrophulariaceae	Buddleja davidii Franch. (Butterfly-bush)	Japan, China
Theaceae	Camellia japonica L. (Japanese Camellia)	Japan, China, Korea, Taiwan
	Camellia sasanqua Thunb. (Sasanqua Camellia) Eurya japonica Thunb. (East Asian Eurya)	Japan, China Japan, China, Korea
Thymelaeaceae	Daphne odora Thunb. (Winter Daphne)	China
Typhaceae	Typha latifolia L. (Broadleaf Cattail)	Japan, North and South America, Europe, Eurasia, Africa
Valerianaceae	Patrinia scabiosifolia Fisch. ex Trevir. (Patrinia)	Japan, China, East Siberia
Verbenaceae	Callicarpa dichotoma (Lour.) K. Koch (Purple Beautyberry)	Japan, China, Korea, Vietnam
Xanthorrhoeaceae	Hemerocallis hybrid (Hort.) (daylily)	Japan, East Asia

Harappa roof, we carried out surveys of spontaneously colonizing plant species and arthropods on the same day. We collected for later identification all specimens that were impossible to identify on-site. Although our study focused on arthropods, we also observed and identified vertebrates.

In order to compare arthropod diversity between the Biotope and Harappa roofs, we used species richness and abundance data to calculate Simpson's diversity index (D) and the Shannon–Wiener index (H'). The analysis was carried out using Excel 2016. We employed a t-test (P < 0.05; Minitab v16) to examine whether species richness was significantly different between the Biotope and Harappa roofs over time.

Results

Overall, the arthropods collected on both roof types were species commonly observed in urban areas, and we observed no endangered species in this study. Richness (orders, species, individuals), diversity indices (Shannon–Wiener, Simpson), and temporal patterns are shown in Table 4.

Over the study period, we observed 71 species (16 orders) and 93 species (13 orders) on the Harappa and Biotope roofs, respectively (Table 4, Appendices 1, 2). On the Harappa roof, 40 species were grassland specialists, as opposed to 30 species on the Biotope roof. Seven species of exotic fauna were observed on the Harappa roof vs. 8 species on the Biotope roof. Some, including the Orthopterans *Patanga japonica* Bolívar, *Ornebius kanetataki* Matsumura, *Phaneroptera falcata* Redtenbacher, and *Euconocephalus thunbergi* Montrouzier (all Hexapoda) were observed to spend their entire life-cycle on the Biotope roof.

Diversity indices were high on both roof types (Table 4), and species richness varied among arthropod groups (Table 5). The most abundant taxa were Hemiptera (e.g., *Plautia stali* Scott [a stink bug], aphids, and leafhoppers), Coleoptera (e.g., *Harmonia axyridis* Pallas [a lady beetle] and *Gonocephalum japanum* Motschulsky [a darkling beetle]) and Lepidoptera (e.g., *Papilio xuthus* L. [Common Swallowtail] and *Mamestra brassicae* L. [a noctuid moth]) on both roofs.

Table 4. The number of faunal taxa (orders, species, and individuals), biodiversity indices (Shannon-Wiener, Simpson), mean number of faunal species on each sampling date in Harappa roof and Biotope roof in Chiba University. Means (\pm SE) with the different letter differ significantly from each other (t = 7.2, df = 23, P < 0.01). Differences in mean number of fauna species Harappa roof and Biotope roof were recorded on each sampling date over the survey period.

Statistic	Harappa roof (extensive)	Biotope roof (intensive)
Total number of orders	16	13
Total number of species	71	93
Total number of individuals	330	1003
Total number of grassland species	40	30
Total number of exotic species	7	8
Shannon-Wiener diversity index	3.62	3.79
Simpson diversity index	0.95	0.97
Mean number of faunal species on each sampling date	$8.32 \pm 0.79^{b^*}$	23.26 ± 1.94^{a}

Temporal changes also varied between roofs (Fig. 5). The Biotope roof showed significantly greater mean faunal abundance (t = 7.2, df = 23, P < 0.01). The maximum richness for a single sampling event was 14 species (both June 2014 and June

Table 5. The number of faunal species (*n*) and percentage of total (%) of each order on a Harappa roof and a Biotope roof in Chiba University.

	Hara	ppa roof	Bio	tope roof
Order	n	%	n	%
Odonata	3	4.2	3	3.2
Orthoptera	4	5.6	11	11.8
Blattodea	1	1.4	0	0.0
Mantodea	1	1.4	1	1.1
Psocodea	0	0.0	1	1.1
Thysanoptera	1	1.4	0	0.0
Hemiptera	16	22.5	18	19.4
Neuroptera	0	0.0	1	1.1
Coleoptera	11	15.5	16	17.2
Diptera	7	9.9	7	7.5
Lepidoptera	16	22.5	16	17.2
Hymenoptera	5	7.0	10	10.8
Araneae	4	5.6	7	7.5
Acari	1	1.4	1	1.1
Isopoda	1	1.4	1	1.1
Total	71	100.0	93	100.0

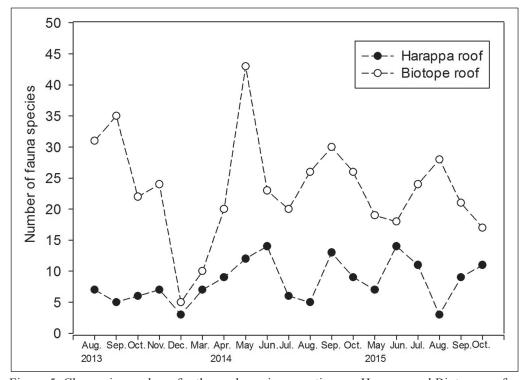


Figure 5. Change in number of arthropod species over time on Harappa and Biotope roofs.

2015) for the Harappa roof and 43 species (May 2014) for the Biotope roof. The minimum number was 3 (both December 2013 and August 2015) for the Harappa and 14 (December 2013) for the Biotope roof.

Native and exotic species were equally represented, as were annual and perennial life forms (Table 6; Appendix 3). The most abundant species were *Vicia sativa* L. (Common Vetch), *Plantago lanceolata* L. (English Platain), and *Setaria viridis* (L.) P. Beauv. (Foxtail Millet). The arrival rate of colonizing plant species varied over time on the Harappa roof (Fig. 6). We documented the fewest arrivals in August of each year, when temperatures were high and rainfall was low. The number of plant species was highest (>15 species) in spring and autumn.

Discussion

The arthropods collected from both roofs in this study were common to urban areas. The results of previous studies have been varied in this regard. Hwang and

Table 6. Native or exotic species and plant life-cycle of spontaneously colonizing plant species on a Harappa roof in Chiba University.

Native or exotic	n	%	Plant life cycle	n	%
Native species Exotic species	26 21	55.3 44.7	Annual or biennial species Perennial species	26 21	55.3 44.7
Total	47	100.0	Total	47	100.0

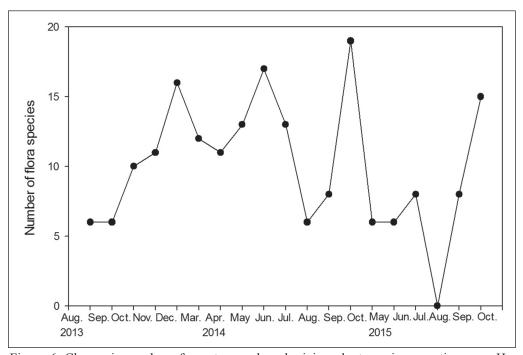


Figure 6. Change in number of spontaneously colonizing plant species over time on a Harappa roof in Chiba University.

Yue (2015) studied green-roof fauna in Singapore and found mostly bees, hornets, and wasps and no endangered species. Other surveys have found that green roofs support uncommon arthropod species (Brenneisen 2006, Kadas 2006, Majka and MacIvor 2009). This result may be partly related to different sampling protocols employed; those studies used pitfall traps, while we used sweep nets.

We found that the Biotope roof had greater species richness and higher abundance than the Harappa roof. This result was supported by previous studies, which also compared diversity on extensive and intensive roofs (Coffman 2007, Madre et al. 2013). The Biotope roof might provide a more consistent environment for fauna and flora because of their stable planted vegetation (including trees), thick substrate (50 cm), and irrigation systems. However, with a comparison of only a single example of each roof type, we cannot generalize based on the other differences between the 2 roof sites. The building height and age of the green roofs also differed, making direct faunal comparisons difficult.

In contrast, the Harappa roof type has unstable vegetation because of a thin substrate and the lack of summer irrigation. The Harappa roof became completely brown during the summer, and we found few arthropods during that period. One month later, both vegetation and arthropods recolonized. This finding suggests that the Harappa roof was used as a temporary habitat. Braaker et al. (2014) studied habitat connectivity of arthropod communities and demonstrated their movement between green roofs and ground sites. Such an exchange between communities is especially crucial on green roofs because well-connected communities are predicted to be more resilient to stochastic disturbance events, and thus, have a higher chance of persistence (Fahring and Merriam 1994).

Previous work has shown that roof age affects arthropod community composition (Iwasaki et al. 2005) and that roof height affects nesting activity of bees and wasps (MacIvor 2016). Further study is necessary to examine the importance of connectivity and proximity among green roofs, as well as the influence of ground-level biodiversity (Hwang and Yue 2015, MacIvor and Lundholm 2011).

Although the Harappa roof had less richness than the Biotope roof, it provided habitats, particularly for grassland specialists. In Japan, there was 1.2 million ha of grassland habitat in the 1960s, but this area declined to 0.4 million ha in the 2010s (Ogura 2006). Grasslands are primarily lost through urban development; however, trees are often saved and/or added due to their frequent role in urban greening (MLITT 2009). Thus, grassland conservation is critical (Ishii and Nakamura 2012), and Harappa roofs could play a role in the conservation of grassland specialists.

The Harappa roof supported 47 spontaneously colonizing plant species, but none of these was endangered or rare. The dominant plant species were *Vicia sativa* L. (Common vetch; native), *Plantago lanceolata* L.(Foxtail Millet) (English Plantain; non-native) and *Setaria viridis* (L.) P. Beauv (Wild Foxtail Millet; native); richness was highest in the Poaceae (grass family). In previous long-term research of green roofs in Germany (Catalano et al. 2016, Köhler and Poll 2010), Poaceae was the most commonly observed family as well. In a previous study of

spontaneous plant colonizers on a Biotope roof, *Solidago altissima* L. (Tall Goldenrod) and *Miscanthus sinensis* Andersson (Zebra Grass) (both invasive) were the most abundant species (Nagase and Nomura 2014). However, we observed few of these specimens on the Harappa roof during this study. Their colonization was likely prevented by the Harappa roof's thin substrate because these are large-bodied plants (Dunnett and Kingsbury 2008). There was concern that dense brush might develop on Harappa roofs, which would require frequent cutting; however, the vegetation was short, and no maintenance was needed over the study period. These results suggest that it is possible to control the amount of vegetation using different depths of substrate.

The new concept of the Harappa roof was established successfully, and it provides a unique opportunity for participatory design and maintenance. Harappa roof development can lead to important opportunities for environmental education, cost reduction, and positive public opinion. These roofs can be made completely from recycled materials. Green roofs are expected to improve urban environments. Plastic materials are frequently used for root barriers, drainage mats, and other purposes; thus, using recycled materials can reduce the life-cycle cost of a green roof. Harappa roofs are also much cheaper than Biotope roofs (at least 25% less in initial cost), and it was easy for citizens to get involved in the design process and in construction. In Japan and around the world, there are still too few examples of public participation in green-roof creation. Successful implementation of green roofs for urban biodiversity depends on participation of urban citizens, and a "citizen scientist" model is needed to facilitate public participation in green roof design (Francis and Lorimer 2011).

Conclusion

It is clear that biotope roofs encourage urban biodiversity. However, the results of this study suggest that Harappa roofs might be able to provide habitats, particularly for grassland fauna, without maintenance or irrigation. Future research should test several hypotheses using multiple examples of each type of biodiversity roof. First, greater structural diversity and standing biomass should make Biotope roofs a more stable habitat, resulting in more consistent faunal diversity and abundance over time. Harappa roofs would represent temporary habitats due to large changes in vegetation cover and biomass during the growing season. Second, we predict that Harappa roofs will preferentially support arthropod species from grassland habitats due to the similarity of their vegetation to ground-level grasslands. Third, aggressively invasive plant species are likely to be less common on Harappa roofs, because low-fertility soils and frequent drought should limit their ability to colonize and spread on Harappa roofs.

To further develop green roofs for biodiversity, it is necessary to study them from both the natural (e.g., long-term research, regional variation) and social science perspective (e.g., citizen involvement, psychological effects). Detailed guidelines must be made available in order to set standards for green—roof design and biodiversity optimization.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP 26750001 and Campus Asia Program Inter University Exchange Program (2010–2014, 2016–2021) (Ministry of Education, Culture, Sports, Science and Technology). We thank Dr. Scott MacIvor (University of Toronto), Dr. Olyssa Starry (Portland State University), Dr. Jeremy Lundholm (St. Mary's University), and 2 anonymous reviewers for providing helpful comments on our manuscript.

Literature Cited

- Baumann, N. 2006. Ground-nesting birds on green roofs in Switzerland: Preliminary observations. Urban Habitats 4:37–44.
- Baumann, N., and F. Kasten. 2010. Green roofs: Urban habitats for ground-nesting birds and plants. Pp. 348–362, *In* N. Muller, P. Werner, and J.G. Kelcy (Eds). Urban Biodiversity and Design. John Wiley and Sons, Chichester, UK. 648 pp.
- Braaker, S., J., Ghazoul, M.K. Obrist, and M. Moretti. 2014. Habitat connectivity shapes urban arthropod communities: The key role of green roofs. Ecology 95:1010–1021.
- Brenneisen, S. 2006. Space for urban wildlife: Designing Green roofs as Habitats in Switzerland, Urban Habitats 4:27–36.
- Catalano, C., C., Marcenò, V.A. Laudicina, and R. Guarino. 2016. Thirty years of unmanaged green roofs: Ecological research and design implications. Landscape and Urban Planning 149:11–19.
- Coffman, R.R. 2007. Vegetated roof systems: Design, productivity, retention, habitat, and sustainability in green roof and ecoroof technology. Ph.D. Dissertation. Graduate School of The Ohio State University, Columbus, OH, USA.
- Coffman, R.R., and G. Davis. 2005. Insect and avian fauna presence on the Ford assembly plant ecoroof. Pp. 457–468, *In* Proceedings of the Third Annual Greening Rooftops for Sustainable Communities Conference (4–6 May 2005, Washington, DC). The Cardinal Group, Toronto, Canada.
- Coffman, R.R., and T. Waite. 2011. Vegetated roofs as reconciled habitats: Rapid assays beyond mere species counts. Urban Habitats. Available online at http://www.urbanhabitats.org/v06n01/vegetatedroofs_full.html. Accessed 1 August 2016.
- Dunnett, N., and N. Kingsbury. 2008. Planting Green Roofs and Living Walls, 2nd Edition. Timber Press, Portland, OR, USA. 336 pp.
- Enjyu, M. 2013. Insects of Japan 1400, Volumes 1 and 2. Bun-Ichi, Shinjyuku, Tokyo. 320 pp. Fahring, L., and G. Meriram. 1994. Conservation of fragmented populations. Conservation Biology 8:50–59.
- Francis, R.A., and J. Lorimer. 2011. Urban reconciliation ecology: The potential of living roofs and walls. Journal of Environmental Management 92:1429–1437.
- Gedge, D. 2003. From rubble to redstarts. Pp. 233–241, *In* Proceedings of First North American Green Roof Conference: Greening Rooftops for Sustainable Communities (29–30 May 2003, Chicago). The Cardinal Group, Toronto, Canada.
- Grant, G. 2006. Extensive green roofs in London. Urban Habitats 4:51–65.
- Gray, J. 2015. Sustainable build: Brownfield sites. Available online at http://www.sustainablebuild.co.uk/brownfieldsites.html. Accessed 1 August 2016.
- Grimm, N.B., S.H. Faeth, N.E. Golubiewski, C.L. Redman, J.G. Wu, X.M. Bai, and J.M. Briggs 2008. Global change and the ecology of cities. Science 319:756–760.
- Güneralp, B., and K. C. Seto. 2008. Environmental impacts of urban growth from an integrated dynamic perspective: A case study of Shenzhen, South China. Global Environmental Change 18:720–735.

- Hwang, Y., and Z. Yue. 2015. Observation of biodiversity on minimally managed green roofs in a tropical city. Journal of Living Architecture 2:9–26.
- Ishii, M., and M. Nakamura. 2012. Development and future of insect conservation in Japan. Pp. 339–357, *In* T. R. New (Ed). Insect Conservation: Past, Present and Prospects. Springer, Heidelberg, Germany. 436 pp.
- Ishimatsu, J., and K. Ito. 2013. Brown/biodiverse roofs: A conservation action for threatened brownfields to support urban biodiversity. Landscape and Ecological Engineering 9:299–304.
- Iwasaki, T., J., Kato, T. Moriguchi, M. Handa, and K. Imai. 2005. Changes of the insect fauna at the high-rise roof garden constructed in Kasumigaseki, Tokyo. Japanese Institute of Landscape Architecture 3:22–25.
- Japan Meteorological Agency. 2016. Weather, climate, and earthquake information, Available online at http://www.data.jma.go.jp/obd/stats/etrn/. Accessed 25 June 2016.
- Kadas, G. 2006. Rare invertebrates colonizing green roofs in London. Urban Habitats 4:66–86.
- Köhler, M., and P.H. Poll. 2010. Long-term performance of selected old Berlin green roofs in comparison to younger extensive green roofs in Berlin. Ecological Engineering 36:722-729.
- Louette, G., T. De Bie, J. Vandekerkhove, S. Declerck, and L. De Meester. 2007. Analysis of the inland cladocerans of Flanders (Belgium): Interring changes over the past 70 years. Belgian Journal of Zoology 137:117–123.
- Lundholm, J.T. 2006. Green roofs and facades: A habitat-template approach. Urban Habitats 4:87–101.
- MacIvor, J.S. 2016. Building height matters: Nesting activity of bees and wasps on vegetated roofs. Israel Journal of Ecology and Evolution. DOI: 10.1080/15659801.2015.1052635. MacIvor, J.S., and J. Lundholm. 2011. Insect species composition and diversity on intensive green roofs and adjacent level-ground habitats. Urban Ecosystems 14:225–241.
- MacIvor, J.S., and Ksiazek, K. 2015. Invertebrates on green roofs. Pp. 333–355, *In* R.K. Sutton (Ed.). Green Roof Ecosystems. Springer, Switzerland. 447 pp.
- Madre, F., A. Vergnes, N. Machon, and P. Clergeau. 2013. A comparison of three types of green roof as habitats for arthropods. Ecological Engineering 57:109–117
- Majka, C.G. and J.S. MacIvor, 2009. *Otiorhynchus porcatus* (Coleoptera: Curculionidae): A European root weevil newly discovered in the Canadian Maritime Provinces. Journal of the Acadian Entomological Society 5:27–31.
- Ministry of Land, Infrastructure, Transport, and Tourism (MLITT). 2009. Green roofs. Available online at http://www.mlit.go.jp/crd/park/shisaku/gi_kaihatsu/okujyo/panf. html. Accessed 25 June 2016.
- MLITT. 2014. Annual survey of installment of green roofs and living walls. Available online at http://www.mlit.go.jp/. Accessed 25 June 2016.
- Morimoto, K., and M. Hayashi. 2007. The Coleoptera of Japan in Color, 4th Edition. Hoi-kusya, Osaka. 323 pp.
- Nagase, A., and M. Nomura. 2014. An evaluation of one example of biotope roof in Japan: Plant development and invertebrate colonisation after 8 years. Urban Forestry and Urban Greening 13:714–724.
- Nagase, A., S. Komori, E. Kumasaka, and S. Koyama. 2015. Experience with plants influencing perception of extensive green roofs. Proceedings of 17th Japan Society of Kansei Engineering, Tokyo, Japan.
- Ogura, J. 2006. The transition of grassland area in Japan. Journal of Kyoto Seika University 30:159–172.

- Organization for Landscape and Urban Infrastructure. 2016. Available online at https://urbangreen.or.jp/. Accessed 1 August 2016.
- Shuowen, T., 2006. A study on park maintenance as a children's outdoor environment. Hokkaido University Collection of Scholarly and Academic Papers 28:1–84.
- Tomokuni, M., Y. Yasunaga, M. Takai, I. Yamashita, M. Kawamura, and T. Kawasawa. 1993. A Field Guide to Japanese Bugs. Zenkokunosonkyouikukyoukai, Tokyo, Japan. 380 pp.
- Williams, N.G., J. Lundholm, and J.S. MacIvor. 2014. Do green roofs help urban biodiversity conservation? Journal of Applied Ecology 51:1643–1649.
- Yamada, Y., Y. Sone, T. Aoki, M. Nomura, and A. Nagase. 2013. Introduction of biodiverse roofs in Japanese urban areas: Possibilities and challenges. Journal of the Japanese Institute of Landscape Architecture 76:71–674.

Appendix 1. List of fauna species on Harappa roof in Chiba University.

Class/ Order	Species	Grassland species	Native or Exotic
Aves			
Passeriformes	Corvus macrorhynchos Wagler Hypsipetes amaurotis Temminck Motacilla alba lugens Gloger Passer montanus L.		Native Native Exotic Native
Columbiformes	Columba livia Gmelin		Exotic
Reptilia			
Squamata	Plestiodon japonicas Peters	0	Native
Insecta			
Odonata	Ischnura senegalensis Rambur Pantala flavescens Fabricius Sympetrum frequens Sélys		Native Native Exotic
Orthoptera	Dianemobius nigrofasciatus Matsumura Oedaleus infernalis Sauss Patanga japonica Bolívar Teleogryllus emma Ohmachi & Matsuura	0 0	Native Native Native Native
Blattodea	Periplaneta fuliginosa Serville		Native
Mantodea	Hierodula patellifera Serville		Native
Thysanoptera	Thysanoptera sp.		_
Hemiptera	Aphidoidea sp. Cicadellidae sp.		-
	Delphacidae sp.	0	- 31 41
	Dolycoris baccarum L.	0	Native
	Geocoris proteus Distant Getomus pygmaeus Dallas	0	Native Native
	Lygaeoidea sp.	0	Native
	Nabis kinbergii Reuter	0	Native
	Orius sp.	0	-
	Pachygrontha antennata Uhler	0	Native
	Phyrrhocoris sinuaticollis Reuter	0	Native
	Plautia stali Scott	0	Native
	Riptortus pedestris Trusted	0	Native
	Trigonotylus caelestialium Kirkaldy	0	Native
	Typhlocybinae sp. Yemma exilis Horváth	0	Native Native
Coleoptera	Cheilomenes sexmaculata Fabricius		Native
Coleoptera	Coccinella septempunctata L. Curculionoidae sp.		Native
	Gonocephalum japanum Motschulsky	0	Native
	Halticinae sp.	0	Native

Class/ Order	Species	Grassland species	Native or Exotic
	Harmonia axyridis Pallas Histeridae sp. Hypera postica Gyllenhal Illeis koebelei Timberlake Paederus fuscipes Curtis Staphylinidae sp.	0	Native Native Exotic Native Native
Diptera	Chironomidae sp. Drosophilidae sp. Sphaerophoria philanthus Meigen Episyrphus balteatus De Geer Syrphinae sp. Tephritidae sp. Tipulidae sp.	0	Native Native Native Native - Native
Lepidoptera	Argyreus hyperbius L. Agrotis segetum Denis & Schiffermüller Crambidae sp. Helicoverpa armigera armigera Hübner Mamestra brassicae L. Noctuidae sp. Palpita nigropunctalis Bremer Papilio xuthus L. Parnara guttata Bremer & Grey Potanthus flavum Murray Pediasia teterrellus Zincken Pieris rapae L. Pyralidae sp. Lycaena phlaeas L. Oncocera sp.		Exotic Native
Hymenoptera	Zizeeria maha Kollar Camponotus japonicus Mayr Apis mellifera L. Campsomeriella annulata Fabricius Formica japonica Motschoulsky Tetramorium tsushimae Emery	0 0	Native Native Exotic Native Native Native
Arachnida Araneae	Lycosidae sp. Misumenops tricuspidatus Fabricius Salticidae sp. Thomisidae sp.	0	Native Native Native
Acari	Balaustium murorum Hermann		Native
Malacostraca Isopoda	Armadillidium vulgare Latreille		Exotic

Appendix 2. List of fauna species on a Biotope roof in Chiba University.

Class/ Order	Species	Grassland species	Native or Exotic
Aves			
Passeriformes	Corvus macrorhynchos Wagler Motacilla alba lugens Gloger	-	Native Native
Columbiformes	Columba livia Gmelin	-	Exotic
Insecta			
Odonata	Lestes sponsa Hansemann	_	Native
	Orthetrum albistylum speciosum Uhler	-	Native
	Pantala flavescens Fabricius	-	Native
Orthoptera	Acrida cinerea Thunberg	0	Native
1	Atractomorpha lata Mochulsky	0	Native
	Euconocephalus thunbergi Montrouzier	0	Native
	Oecanthus euryelytra Ichikawa	0	Native
	Ornebius kanetataki Matsumura	-	Native
	Patanga japonica Bolívar	0	Native
	Phaneroptera falcata Redtenbacher	0	Native
	Polionemobius micado Shiraki	0	Native
	Teleogryllus emma Ohmachi & Matsuura	0	Native
	Tettigonia orientalis Uvarov	-	Native
	Velarifictorus micado Saussure	-	Native
Mantodea	Tenodera aridifolia Stoll	0	Native
Neuroptera	Chrysopidae sp.	-	Native
Hemiptera	Anisops ogasawarensis Walker	-	Native
•	Ceroplastes ceriferus Fabricius	-	Native
	Ceroplastes rubens Maskell	-	Exotic
	Coccoidea sp.	-	-
	Corythucha marmorata Uhler	0	Exotic
	Dulinius conchatus Distant	0	Exotic
	Geisha distinctissima Walker	-	Native
	Gerris lacustris latiabdominis Miyamoto	-	Native
	Graptopsaltria nigrofuscata Motschulsky	-	Native
	Kallitaxilla sinica Walker	-	Native
	Meimuna opalifera Walker	-	Native
	Microvelia douglasi Scott	-	Native
	Nipponaphis distyliicola Monzen	_	Native
	Nippolachnus piri Matsumura	-	Native
	Ossoides lineatus Bierman Plautia stali Scott	0	Native
	Riptortus pedestris Trusted	- 0	Native Native
	Uroleucon nigrotuberculatum Olive	0	Exotic
G 1		O	
Coleoptera	Agrypnus binodulus Motschulsky	-	Native
	Anomala albopilosa Hope	-	Native

Class/ Order	Species	Grassland species	Native or Exotic
	Anomala cuprea Hope	-	Native
	Anomala orientalis Waterhouse	-	Native
	Argopistes coccinelliformis Motschulsky	-	Native
	Aulacophora femoralis Motschulsky	0	Native
	Chilocorus kuwanae Silvestri	0	Native
	Coccinella septempunctata L.	-	Native
	Gametis jucunda Faldermann	0	Native
	Gonocephalum japanum Motschulsky	-	Native
	Harmonia axyridis Pallas	-	Native
	Illeis koebelei Timberlake	-	Native
	Linaeidea aenea L.	-	Native
	Pseudocneorhinus bifasciatus Roelofs	-	Native
	Propylaea japonica Thunberg	-	Native
	Pyrrhalta humeralis Chen	-	Native
Diptera	Chironomidae sp.	-	Native
	Episyrphus balteatus De Geer	0	Native
	Milesiinae sp.	0	Native
	Sphaerophoria indiana Bigot	0	Native
	Sphaerophoria menthastri L.	0	Native
	Syrphinae sp.	-	Native
	Tipulidae sp.	-	Native
Lepidoptera	Adoxophyes honmai Yasuda	-	Native
	Crambidae sp	-	Native
	Eumeta minuscula Butler	-	Native
	Geometridae sp.	-	Native
	Glyphodes perspectalis Walker	-	Native
	Homona magnanima Diakonoff	-	Native
	Mamestra brassicae L.	0	Native
	Palpita nigropunctalis Bremer	-	Native
	Papilio machaon L.	0	Native
	Papilio xuthus L.	-	Native
	Parapediasia teterella Zincken	-	Exotic
	Parnara guttata Bremer & Grey	0	Native
	Pyralidae sp.	-	Native
	Pelopidas mathias Fabricius	0	Native
	Tortricidae sp.	-	Native
	Vanessa indica Herbst	0	Native
Hymenoptera	Braconidae sp.	-	Native
	Camponotus japonicus Mayr	0	Native
	Chalcididae sp.	-	-
	Formica japonica Motschoulsky	0	Native
	Icheumonidae sp.	-	Native
	Megacampsomeris schulthessi Betrem	-	Native
	Megachile sp.	-	Native
	Pristomyrmex punctatus Smith	0	Native

2018	Urban Naturalist A. Nagase, Y. Yamada, T. Aoki, and M. Nomura	Special	Issue No. 1
Class/ Order	Species	Grassland species	Native or Exotic
	Tetramorium tsushimae Emery Xylocopa appendiculata circumvolans Latrei	o lle -	Native Native
Psocodea	Psocodea sp.	-	Native
Arachnida			
Araneae	Carrhotus xanthogramma Latreille	-	Native
	Hasarius adansoni Audouin	-	Native
	Misumenops sp.	-	Native
	Myrmarachne sp.	-	Exotic
	Nephila clavata L. Koch	-	Native
	Thomisidae sp.	-	Native
Malacostraca			
Isopoda	Armadillidium vulgare Latreille	-	Native
•	Pholcus sp.	-	Native

Appendix 3. List of spontaneously colonizing plant species on a Harappa roof in Chiba University. ACFOR: A = abundant ($\geq 30\%$), C = common (20–29%), F = frequent (10–19%), O = occasional (5–9%), R = rare (1–4%).

Family	Species	Native or Exotic	Plant life-cycle	ACFOR scale
Amaryllidaceae	Allium macrostemon Bunge	Native	Perennial	R
Apiaceae	Torilis japonica (Houtt.) DC.	Native	Perennial	R
Asteraceae	Bidens frondosa L. Conyza canadensis (L.) Cronquist Conyza sumatrensis (Retz.) E. Walker Gnaphalium japonicum Thunb Solidago altissima L. Stenactis annuus (L.) Cass. Youngia japonica (L.) DC.	Exotic Exotic Native Exotic Exotic Native	Annual Biennial Perennial Perennial Annual Perennial	R R C
Boraginaceae	<i>Trigonotis peduncularis</i> (Trevir.) Benth. ex Hemsl	. Native	Annual	F
Brassicaceae	Cardamine scutata Thunb.	Exotic	Annual	O
Caryophyllaceae	Cerastium glomeratum Thuill.	Exotic	Annual	F
Chenopodiaceae	Chenopodium album L.	Exotic	Annual	R
Convolvulaceae	Calystegia japonica (Thunb.) Choisy	Native	Perennial	R
Cyperaceae	Carex leucochlora Bunge Cyperus microiria Steud. Cyperus rotundus L.	Native Native Native	Perennial Annual Perennial	O O O
Euphorbiaceae	Acalypha australis L. Euphorbia maculata L.	Native Exotic	Annual Annual	O R
Fabaceae	Kummerowia stipulacea (Maxim.) Makino Trifolium pratense L. Vicia hirsuta (L.) Gray Vicia sativa L.	Native Exotic Native Native	Annual Perennial Perennial	C
Geraniaceae	Geranium carolinianum L.	Exotic	Annual	R
Iridaceae	Sisyrinchium rosulatum E.P. Bicknell	Exotic	Annual	F
Lamiaceae	Lamium purpureum L.	Native	Perennial	C
Oxalidaceae	Oxalis corniculata L.	Native	Perennial	C
Plantaginaceae	Plantago lanceolata L. Veronica arvensis L.	Exotic Exotic	Perennial Annual or Biennial	A F
	Veronica persica Poir.	Exotic	Perennial	F
Poaceae	Bromus catharticus Vahl Dactylis glomerata L. Digitaria ciliaris (Retz.) Koel Eleusine indica (L.) Gaertn.	Exotic Exotic Native Native	Annual Perennial Annual Annual	F O F C

		Native or	Plant	ACFOR
Family	Species	Exotic	life-cycle	scale
	Elymus tsukushiensis Honda var. transiens (Hack.) Osada	Native	Perennial	0
	Festuca arundinacea Schreb.	Exotic	Perennial	O
	Festuca ovina L.	Exotic	Perennial	O
	Setaria pumila (Poir.) Roem. & Schult.	Native	Annual	C
	Setaria viridis (L.) P. Beauv.	Native	Annual	A
	Zoysia japonica Steud.	Native	Perennial	R
Polygonaceae	Rumex japonicus Houtt.	Native	Perennial	O
Portulacaceae	Portulaca oleracea L.	Native	Perennial	F
Rubiaceae	Galium spurium var. echinospermon (Wallr.) Hayek	Native	Annual	R
Solanaceae	Solanum carolinense L.	Exotic	Perennial	R
Ulmaceae	Zelkova serrata (Thunb.) Makino	Native	Perennial	R
Vitaceae	Cayratia japonica (Thunb.) Gagnep.	Native	Perennial	О